A NOVEL SYNTHESIS OF SUBSTITUTED 3-AMINOPENEMS A. J. Barker*, M. R. Teall and G. Johnson (in part) Department of Synthetic Chemistry Hoechst Pharmaceutical Research Laboratories Walton, Milton Keynes, MK7 7AJ, U.K.

Summary: Displacement of phenol leaving groups at the C-3 position of penems by amines provides a general route to substituted 3-aminopenems

The penems, a group of highly active antibiotics, have been studied extensively over the last decade. High antibacterial activity and beta-lactamase stability in the penem series is provided by a 6-[1(R)-hydroxyethyl] group in the thienamycin-like 5,6-trans configuration. The C-3 position of the penems is more tolerant of substituent variation and a large number of penems bearing substituents bonded via sulphur¹, oxygen² and carbon³ at this position have been prepared: several of these compounds are undergoing intensive study at present^{4,5}. Conversely penem systems bearing substituents bonded through nitrogen at C-3 have received little attention^{6a},^b. In this paper we describe a facile route to a range of these molecules.

As a result of other work in the penem area² a series of 3-aryloxypenems was available to us and we decided to investigate the possibility of using the phenol as a leaving group in such systems in an attempt to prepare 3-aminopenems. Displacements of leaving groups at the C-3 position of carbapenems is well known and has led to a range of molecules possessing sulphur side chains⁷; with one exception similar processes in penems have been little studied⁸.

When the p-cyanophenoxypenem (1a) was treated with 1.05 equiv. of n-propylamine in DMF as solvent at room temperature a reaction occurred to liberate p-cyanophenol and form a slightly less polar product. Isolation of the product by silica gel chromatography afforded a golden yellow foam which was identified as the n-propylamino-penem (2a) on the basis of spectral data. The material exhibited infra-red absorptions (KBr disc) at 1780 and 1773 cm⁻¹ and a ¹H n.m.r. spectrum which showed δ (CDCl₃) 8.22, 7.63 (4H, AA BB, J=8.8Hz, Ar-H), 7.82 (1H, br, NH), 5.53 (1H,d,J=1.3Hz, H-5), 5.48, 5.16 (2H, ABq, J=14.2Hz, -CH₂Ar), 4.34-4.18 (1H, m, H-8), 3.61 (1H, dd, J=7.1, 1.3Hz, H-6), 3.33-3.10 (2H, m, -NHCH₂), 1.74 (1H,OH), 1.47 (2H, m,

a; X = CN
b; X = NO₂
b; X = NO₂
b; R¹ = CH₃, R² = H
c; R¹, R² =
$$\bigcirc$$
 NCH₃
c; R¹, R² = \bigcirc NCH₃
c; R¹ = R² = CH₃
c; R¹ = R² = CH₃
f; R¹ = CH₃, R² = CH₂
f; R¹ = CH₃, R² = CH₂CO₂Et
c; R¹ = Ph, R² = H

 $CH_2CH_2CH_3$), 1.40 (3H, d, J=6.3Hz, $CHCH_3$), 0.96 (3H, t, J=7.3Hz, $-CH_2CH_3$) p.p.m. and $m_e = 407$ (M+). This data was entirely consistent with the proposed structure (2<u>a</u>) and in accordance with data published by Schering chemists for a similar compound^{6b}. The ¹H n.m.r. spectrum did show some splitting of the peaks due to the presence of a small amount (<u>ca</u>.20%) of the imino-penam tautomer (3a), which was inseparable from (2<u>a</u>) by chromatography.

We were gratified to find that this reaction represented a general route to various substituted 3-aminopenems and the results of other experiments are presented in the Table. In cases in which a primary amine was used inseparable mixtures of the aminopenems $(2\underline{a}, \underline{b})$ and the tautomeric imino-penams $(3\underline{a}, \underline{b})$ were obtained with the former predominating. Secondary amines gave the expected aminopenem products $(2\underline{c}-\underline{f})$. The reactions were slower in less polar solvents whilst the use of the p-nitrophenoxypenem (1\underline{b}) to prepare aminopenem $(2\underline{a})$ resulted in a significantly faster reaction than the analogous process using (1\underline{a}). We anticipate the reaction occurs by a Michael addition - elimination process.

TABLE : Reaction of 3-arlyoxypenems with amines*

Starting Material	R ¹ R ² NH	Product	Isolated Yield
la	n-PrNH ₂	2a/3a (4:1)	75%
1b	n-PrNH ₂	2a/3a (4:1)	57%
la	MeNH ₂	2b/3b (3:1)	39%
la	MenNH	2c	26%
1 a	Me2NH _{Me}	2d	31%
la	CH ₂ NH Me	2e	33%
la	EtO ₂ CCH ₂ NHMe	2f	78% [†]

As might be expected from its lower nucleophilicity aniline did not react with the aryloxypenem (la); however the phenylamino-penem (2g) could be prepared by a modification of some earlier chemistry performed in these laboratories². Treatment of the

PNB = p-nitrobenzyl

azetidinone-acetate (4) with 2.5 equiv. of lithium hexamethyldisilazide in THF at -40°C followed by addition of phenyl isothiocyanate and then acetic anhydride afforded the ketene derivative (5). Hydrolysis of the silyl ether protecting group (5M aqueous HCl, THF, 20°C) followed by stereospecific chlorinolysis (Cl₂, CCl₄-CHCl₃, 0°C)⁹ led to the cis-chloro compound (6) which on mild base treatment (imidazole, dioxane-H₂0) smoothly cyclised to give the phenylaminopenem (2g) together with ca. 15% of the tautomeric imino-penam (3g). The spectral data of the material was consistent with structure (2g); v_{max} 1775 cm⁻¹, δ (CDCl₃) 8.21, 7.59 (4H, AA'BB', J=8.8Hz,-C₆H₄NO₂), 7.45-7.25 (5H,m,-Ph), 7.10 (1H, br, NH), 5.63 (1H, d, J=1.6Hz, H-5), 5.47, 5.26 (2H,ABq, J=13.6Hz, CH₂ Ar), 4.30-4.20 (1H,m,H-8), 3.84 (1H, dd, J=4.7, 1.6Hz, H-6),2.09 (1H, OH),1.34 (3H, d, J=6.4Hz, >CHCH₃) p.p.m. Clearly, in compounds (3a) and (3g) the reduced strain provided by the additional sp³ centre is outweighed by the stabilisation resulting from better conjugation in (2a) and (2g) leading to a preponderance of the penem tautomer.

Attempted hydrogenolysis of the p-nitrobenzyl ester protecting group in these compounds (4 atm H₂, KHCO₃aq, EtOAc, 103Pd-C) gave disappointing results. In many cases the conditions used led to decomposition; however both the n-propylaminopenem (2<u>a</u>) and the phenylaminopenem (2<u>g</u>) (together with small amounts of their imino-penam tautomers (3<u>a</u>) and

 $(3\underline{g})$ did give moderate yields of the corresponding potassium salts under these conditions. Examination of the spectral properties of the potassium salt obtained from $(2\underline{a})$ and $(3\underline{a})^{10}$ revealed that it existed as a 3:2 tautomeric mixture of the penem $(7\underline{a})$ and the imino-penam $(8\underline{a})$. The ¹H nmr spectrum of the potassium salt derived from $(2\underline{g})$ and $(3\underline{g})$ however showed that the phenylaminopenem tautomer $(7\underline{b})$ was predominant (> 80%)¹¹ and only minor amounts of the imino-penam tautomer (8b) were present.

These aminopenem potassium salts exhibited only moderate antibacterial acitivity. This effect is possibly due to instability under the conditions of the test.

Acknowledgement: The authors wish to thank Anne Gallagher for her technical assistance and John Walmsley for biological testing.

References and Notes:

- A. Afonso, A.K. Ganguly, V. Girijavallabhan and S. McCombie, "Recent Advances in the Chemistry of Beta-Lactam Antibiotics", R.S.C., 1984, pp 266-279.
- 2. M. D. Cooke, K. W. Moore, B.C. Ross and S. E. Turner, <u>Ibid</u>, 1984, pp 100-115.
- G. Franceschi, M. Alpegiani, A. Badeschi, M. Foglio, E. Perrone, G. Meinardi, S. Grasso and I. Carneri, J. Antibiotics, <u>37</u>, 685, (1984).
- G. Franceschi, M. Foglio, M. Alpegiani, C. Battistini, A. Bedeschi, E. Perrone, F. Zarini, F. Arcamone, C. Della Bruna, A. Sanfilippo, J. Antibiotics, <u>36</u>, 938, (1983).
- 5. SCH 34343; J. Antimicrobial Chemotherapy, 15, Suppl.C, (1985).
- 6a. M. Cossement, J. Marchand-Brynaert, S. Bogdan, L. Ghosez, Tet. Lett., 2563, (1983).
- 6b. V.M. Girigavallabhan, A.K. Ganguly, Y-T. Liu, P.A.Pinto, N. Patel, R.H. Hare and G.H. Miller, J. Antibiotics, <u>39</u>, 1187, (1986).
- 7. M. Sletzinger, T. Liu, R. A. Reamer, I. Shinkai, Tet. Lett, 4221, (1980).
- F. DiNinno, D. A. Muthard, R. W. Ratcliffe, B.G. Christensen, Tet.Lett., 3535, (1982).
- M. D. Cooke, K. W. Moore, B. C. Ross, S. E. Turner, JCS Chem. Comm., 1005, (1983).
- 10. 7<u>a</u>: δ (D₂O) 5.47 (d, J=1.2Hz, H-5), 4.40-4.21 (m, H-8), 3.65 (dd, J=6.2 and 1.2Hz, H-6), 3.27 (m, -NHCH₂-), 1.73-1.58 (m,-NHCH₂CH₂-), 1.34 (d, J=6.4Hz,>CHCH₃), 0.89 (t, J=7.4Hz, propyl-CH₃); many peaks show splitting. 8<u>a</u> : δ(D₂O) 5.40 (d, J=1.0Hz, H-5) and 1.26 (t, J=6.4Hz,>CHCH₃).
- 11. <u>7b</u>: δ (D₂O) 7.52-7.30 (m, Ph), 5.59 (d, J=1.5Hz, H-5), 4.28-4.12 (m, H-8), 3.93 (dd, J=1.5 and 6.0Hz, H-6), 1.23 (d, J=6.4Hz, CHCH₃); <u>8b</u>: δ (D₂O) 5.52 (d, J=1.4Hz, H-6). (Received in UK 2 March 1987)